Mining fuzzy sequential patterns from quantitative transactions
نویسندگان
چکیده
Many researchers in database and machine learning fields are primarily interested in data mining because it offers opportunities to discover useful information and important relevant patterns in large databases. Most previous studies have shown how binary valued transaction data may be handled. Transaction data in real-world applications usually consist of quantitative values, so designing a sophisticated data-mining algorithm able to deal with various types of data presents a challenge to workers in this research field. In the past, we proposed a fuzzy data-mining algorithm to find association rules. Since sequential patterns are also very important for real-world applications, this paper thus focuses on finding fuzzy sequential patterns from quantitative data. A new mining algorithm is proposed, which integrates the fuzzy-set concepts and theAprioriAll algorithm. It first transforms quantitative values in transactions into linguistic terms, then filters them to find sequential patterns by modifying the AprioriAll mining algorithm. Each quantitative item uses only the linguistic term with the maximum cardinality in later mining processes, thus making the number of fuzzy regions to be processed the same as the number of the original items. The patterns mined out thus exhibit the sequential quantitative regularity in databases and can be used to provide some suggestions to appropriate supervisors.
منابع مشابه
Mining Negative Fuzzy Sequential Patterns
Many methods have been proposed for mining fuzzy sequential patterns. However, most of conventional methods only consider the occurrences of fuzzy itemsets in sequences. The fuzzy sequential patterns discovered by these methods are called as positive fuzzy sequential patterns. In practice, the absences of frequent fuzzy itemsets in sequences may imply significant information. We call a fuzzy se...
متن کاملFuzzy Weighted Data Mining from Quantitative Transactions with Linguistic Minimum Supports and Confidences
Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Most conventional data-mining algorithms identify the relationships among transactions using binary values and set the minimum supports and minimum confidences at numerical values. Linguistic minimum support and minimum confidence values are, however, more natural ...
متن کاملMINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS
This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...
متن کاملFuzzy multiple-level sequential patterns discovery from customer transaction database
Sequential pattern discovery is a very important research topic in data mining and knowledge discovery and has been widely applied in business analysis. Previous works were focused on mining sequential patterns at a single concept level based on definite and accurate concept which may not be concise and meaningful enough for human experts to easily obtain nontrivial knowledge from the rules dis...
متن کاملFuzzy Genetic Data Mining for Customer Buying Patterns using K-Means Clustering
Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Most conventional data-mining algorithms identify the relationships among transactions using binary values. Transactions with quantitative values are however commonly seen in real-world applications. The fuzzy concepts are used to represent item importance, item qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 10 شماره
صفحات -
تاریخ انتشار 2006